

Welcome to SCKAN-Compare’s documentation!

A package for retrieving and visualizing data contained in SCKAN
(e.g., across species, relationship to spinal segments) to highlight
similarities and differences in neuronal pathways

License: Apache License 2.0

Introduction

The body’s involuntary physiologic processes is regulated by three distinct systems: sympathetic, parasympathetic and enteric, collectively called the autonomic nervous system. Any deviation from the optimal functioning of the system results in acute or chronic disease conditions. In developing suitable interventions/therapy to tackle the disease condition, clinicians need to be able to compare similarities/ differences between model organisms and humans. To achieve this goal, SKCAN-Compare uses the SPARC data. SKCAN-Compare can retrieve and visualise data between two organisms and compare the functional connectivity between the two organisms, thereby decreasing the time and resources spent on laboratory studies and assisting in clinical studies.

SKCAN-Compare

SKCAN-Compare offers its functionality in two forms:

	Python package

	Web app

The Python package can be installed via PyPI. It allows users to customize and employ the took in their own workflows.

The Web App offers a ready-to-use tool to help compare SCKAN data. The app internally uses the Python module.

Contents

	Introduction
	Installation

	Basic Usage

	Web App

	Contributor Covenant Code of Conduct

	Code Docs
	SckanCompare Class

	AntomyVis Class

	BlockVis Class

	CacheManager Class

	Utils Module

Indices and tables

	Index

	Module Index

	Search Page

Introduction

	Installation

	Basic Usage

	Web App

	Contributor Covenant Code of Conduct

Installation

If you are relying on Python packages for several, independent projects, we recommend that you make use
of separate environments for each project. In this way, you can safely update and install packages for
one of your projects without affecting the others. Both, conda and pip support installation in
environments – for more explanations see the respective instructions below.

Standard install

We recommend installing into a separate “virtual environment”, see the
Python Packaging User Guide [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/]
for more information.
SCKAN-Compare is included in the PyPI package index: https://pypi.org/project/SCKAN-compare/
You can therefore install it with the pip utility:

pip install sckan-compare

In rare cases where your current environment does not have access to the pip utility, you first
have to install pip via:

python -m ensurepip

Development install

If you wish to contribute to the development of SCKAN-Compare, the easiest way of setting up your environment
would be as follows:

git clone https://github.com/SPARC-FAIR-Codeathon/2023-team-4
cd 2023-team-4
pip install -e .

Installing with the -e flag will allow changes to the source files to be immediately reflected in your environment.

Basic Usage

The functionality of the Python module can be accessed via the following classes:

	SckanCompare

	Visualizer

	SimpleVisualizer

Detailed examples are available via the Jupyter notebook tutorials.
Here, we show a few example code snippets of their usage:

You can import each of the classes via:

from sckan_compare import SckanCompare
from sckan_compare.visualize import Visualizer
from sckan_compare.simplevis import SimpleVisualizer

You can execute a SPARQL quey via:

result = sc.execute_query(<<query string>>)

Simple block plot can be created via:

simvis = SimpleVisualizer()
fig = simvis.plot_figure(result_df, selected_Region_A, selected_Region_B)

Web App

The web app is a Python-based app developed using ‘Shiny for Python’. Shiny makes it easy to build web applications with Python code. It enables you to customize the layout and style of your application and dynamically respond to events, such as a button press, or dropdown selection. The examples on this site are rendered in the browser using Pyodide, but you can also install shiny to use it with your own projects.

We leveraged this functionality to provide a GUI interface to users to readily access the features of SCKAN-Compare. The app can also be run locally. You will need to install some packages for this. These can be installed as follows:

pip install shiny
pip install --upgrade shiny htmltools
pip install shinyswatch
pip install shinywidgets

Once the environrment is setup, the app can be launched via:

shiny run --reload

The above command should be run in the directory containing the file app.py, which contains the source code for the app.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our
project and our community a harassment-free experience for everyone,
regardless of age, body size, disability, ethnicity, sex
characteristics, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance,
race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual
attention or advances

	Trolling, insulting/derogatory comments, and personal or political
attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or
electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of
acceptable behavior and are expected to take appropriate and fair
corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, or to ban
temporarily or permanently any contributor for other behaviors that they
deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public
spaces when an individual is representing the project or its community.
Examples of representing a project or community include using an
official project e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and
clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by contacting the project team at team@briansimulator.org.
All complaints will be reviewed and investigated and will result in a
response that is deemed necessary and appropriate to the circumstances.
The project team is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement
policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor
Covenant [https://www.contributor-covenant.org], version 1.4,
available at
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Code Docs

	SckanCompare Class

	AntomyVis Class

	BlockVis Class

	CacheManager Class

	Utils Module

SckanCompare Class

A package for retrieving and visualizing data contained in SCKAN
(e.g., across species, relationship to spinal segments) to highlight
similarities and differences in neuronal pathways

License: Apache License 2.0

	
class sckan_compare.SckanCompare(endpoint='https://blazegraph.scicrunch.io/blazegraph/sparql', max_cache_days=7)

	Bases: object

Base class for accessing functionality

	
execute_query(query_string, species=None, cached=True)

	Execute a SPARQL query and return the result.

	Parameters:

	
	query_string (str) – The SPARQL query string to execute.

	species (str, optional) – The species to consider in the query, if applicable.

	cached (bool, optional) – Whether to use cached data if available. Defaults to False.

	Returns:

	The query result.

	Return type:

	list

	
get_filtered_dataframe(result, species=None, filter_column=None, filter_value=None)

	Create a filtered DataFrame from a query result.
Replaces all synonyms for species and regions with unique labels,
followed by the deletion of duplicate rows.

	Parameters:

	
	data (list) – The query result.

	species (str) – The species for which the data is provided.

	filter_column (str, optional) – The column to be filtered.

	filter_value (str, optional) – The value to be used for filtering column.

	Returns:

	The filtered DataFrame.

	Return type:

	pandas.DataFrame

	
get_valid_phenotypes()

	Retrieve a list of valid phenotypes from the data source.

	Returns:

	Dict with valid phenotypes URIs as keys and corresponding labels as values.

	Return type:

	dict

	
get_valid_phenotypes_circuit_role()

	Retrieve a list of valid phenotypes with circuit role from the data source.

	Returns:

	Dict with valid phenotypes URIs as keys and corresponding labels as values.

	Return type:

	dict

	
get_valid_regions_specify_species(species, region=None)

	Retrieve a list of valid regions for a specific species from the data source.

	Parameters:

	
	species (str) – The species for which to retrieve valid regions.

	region (str, optional) – The region for which to retrieve valid regions.
Valid values are: A, B, C or None. Defaults to None and returns all regions.

	Returns:

	Dict of valid region URIs as keys and corresponding labels as values

	Return type:

	dict

	
get_valid_species()

	Retrieve a list of valid species from the data source.

	Returns:

	Dict with valid species URIs as keys and corresponding labels as values.

	Return type:

	dict

	
plot_dataframe_anatomy_vis(df, species=None, region_A=None, region_B=None, region_C=None)

	Plot anatomical connectivity map based on a DataFrame.

	Parameters:

	
	df (pandas.DataFrame) – The DataFrame containing connectivity information.

	species (str, optional) – The species for visualization.

	region_A (str, optional) – The source region for filtering.

	region_B (str, optional) – The target region for filtering.

	region_C (str, optional) – The intermediate region for filtering.

	Returns:

	The Plotly figure widget.

	Return type:

	go.FigureWidget

	
plot_dataframe_block_vis(df, region_A=None, region_B=None)

	Plot anatomical connectivity map based on a DataFrame.

	Parameters:

	
	df (pandas.DataFrame) – The DataFrame containing connectivity information.

	species (str, optional) – The species for visualization.

	region_A (str, optional) – The source region for filtering.

	region_B (str, optional) – The target region for filtering.

	Returns:

	The Plotly figure widget.

	Return type:

	go.FigureWidget

	
replace_region_synonyms_dataframe(df, species)

	Replace region synonyms in a DataFrame with unique labels.

e.g. ‘ovary’ : http://purl.obolibrary.org/obo/UBERON_0000992
has several synonyms, such as ‘animal ovary’, ‘female gonad’, etc.
This method is used to map these synonyms to the parent label.

	Parameters:

	df (pandas.DataFrame) – The DataFrame containing region information.

	Returns:

	The DataFrame with replaced region synonyms.

	Return type:

	pandas.DataFrame

	
replace_species_synonyms_dataframe(df)

	Replace species synonyms in a DataFrame with unique labels.

e.g. ‘Rattus norvegicus’ : http://purl.obolibrary.org/obo/NCBITaxon_10116
has several synonyms, such as ‘brown rat’, ‘Norway rat’, ‘rats’, ‘rat’.
This method is used to map these synonyms to the parent label.

	Parameters:

	df (pandas.DataFrame) – The DataFrame containing species information.

	Returns:

	The DataFrame with replaced species synonyms.

	Return type:

	pandas.DataFrame

AntomyVis Class

A class for creating interactive brain region visualizations using Plotly.

	param region_dict:

	Dictionary mapping region names to (x, y) coordinates.

	type region_dict:

	dict

	param species:

	The species for which the visualization is being created.

	type species:

	str

	
sckan_compare.anatomyvis.AntomyVis.region_dict

	Dictionary mapping region names to (x, y) coordinates.

	Type:

	dict

	
sckan_compare.anatomyvis.AntomyVis.species

	The species for which the visualization is being created.

	Type:

	str

	
sckan_compare.anatomyvis.AntomyVis.SCALE

	Scaling factor for the visualization.

	Type:

	int

	
sckan_compare.anatomyvis.AntomyVis.MAX_X

	Maximum X coordinate.

	Type:

	int

	
sckan_compare.anatomyvis.AntomyVis.MAX_Y

	Maximum Y coordinate.

	Type:

	int

	
sckan_compare.anatomyvis.AntomyVis.NODE_RADIUS

	Radius of the node markers.

	Type:

	float

	
sckan_compare.anatomyvis.AntomyVis.fig

	Plotly figure widget for visualization.

	Type:

	go.FigureWidget

	
__init__(region_dict, species):

	Initialize the AntomyVis class.

	
get_json_species_map(species=None):

	Load a JSON species mapping of region names to (x, y) coordinates for anatomical visualization.

	
draw_rect(start_x, start_y, width=1, height=1, color_border="#4051BF", color_fill="#C5CAE9", tooltiptext="<set name>"):

	Draw a rectangular region on the visualization.

	
draw_poly(xlist, ylist, color_border="#4051BF", color_fill="#C5CAE9", tooltiptext="<set name>"):

	Draw a polygonal region on the visualization.

	
draw_background():

	Draw the anatomical background for species.

	
mark_node(region, color_border="#FF0000", color_fill="#FFFF00", small=False):

	Mark a node (brain region) on the visualization.

	
interpolate_coordinates(point1, point2, resolution=0.1):

	Interpolate between two cartesian coordinates using NumPy.

	
plot_dataframe(df):

	Plot dataframe connectivity info.

	
draw_edge_AB(region1, region2, neuron=None):

	Draw an edge (connection) between two nodes (regions) A and B.

	
draw_edge_ABC(region1, region2, region3, neuron=None):

	Draw an edge (connection) between nodes (regions) A and B via C.

	
show_figure():

	Display the Plotly figure widget.

	
get_figure():

	Get the Plotly figure widget.

BlockVis Class

A class for creating block visualizations using Plotly.

	param None:

	

	
sckan_compare.blockvis.BlockVis.SCALE

	Scaling factor for visualization.

	Type:

	int

	
sckan_compare.blockvis.BlockVis.MAX_Y

	Maximum Y coordinate.

	Type:

	int

	
sckan_compare.blockvis.BlockVis.MAX_X

	Maximum X coordinate.

	Type:

	int

	
sckan_compare.blockvis.BlockVis.icons

	Dictionary of icons for nodes.

	Type:

	dict

	
sckan_compare.blockvis.BlockVis.fig

	Plotly figure widget for visualization.

	Type:

	go.FigureWidget

	
__init__():

	Initialize the BlockVis class.

	
interpolate_coordinates(point1, point2, resolution=0.1):

	Interpolate between two cartesian coordinates.

	
plot_figure(df, region_A, region_B):

	Plot the connectivity block visualization

	
update_graph():

	Update the layout of the figure.

	
draw_block_bg(x0, y0, x1, y1, opacity, color):

	Draw a rectangular background block.

	
draw_image(icon, x, y):

	Draw an image on the visualization.

	
draw_connections(x, y, label, color):

	Draw connections between nodes.

	
add_text(x, y, text, fontsize=20):

	Add text annotation to the visualization.

	
mark_node(x, y, label):

	Mark a node on the visualization.

	
show_figure():

	Display the Plotly figure widget.

	
get_figure():

	Get the Plotly figure widget.

CacheManager Class

A class for managing a disk-based cache with expiration for cached data.

	param cache_directory:

	Path to the directory for storing cache data.

	type cache_directory:

	str

	param max_cache_days:

	Maximum number of days a cached entry is considered valid.

	type max_cache_days:

	int

	
sckan_compare.cachemanager.CacheManager.cache

	Disk cache object for storing data.

	Type:

	diskcache.Cache

	
sckan_compare.cachemanager.CacheManager.max_cache_days

	Maximum number of days a cached entry is considered valid.

	Type:

	int

	
__init__(cache_directory, max_cache_days):

	Initialize the CacheManager class.

	
create_disk_cache(directory):

	Create a disk cache object.

	
get_cached_data(key):

	Retrieve cached data associated with a given key.

	
cache_data(key, data):

	Cache data with an associated key.

	
invalidate_old_cache_entries():

	Remove cached entries that have expired.

Utils Module

Utility methods for SckanCompare package.

License: Apache License 2.0

	
sckan_compare.utils.filter_dataframe(df, column, value)

	Filter a DataFrame based on value in specific column.

	Parameters:

	
	df (pandas.DataFrame) – The DataFrame to be filtered.

	column (str) – The column to be filtered.

	value (str) – The value to be used for filtering column.

	Returns:

	The filtered DataFrame.

	Return type:

	pandas.DataFrame

	
sckan_compare.utils.get_dataframe(data_as_list)

	Convert a list of data to a pandas DataFrame.

	Parameters:

	data_as_list (list) – List of data to be converted.

	Returns:

	The converted DataFrame.

	Return type:

	pandas.DataFrame

	
sckan_compare.utils.remove_duplicate_species(df)

	Replace various species synonyms with standard species names in a DataFrame.

	Parameters:

	df (pandas.DataFrame) – The DataFrame containing species information.

	Returns:

	The DataFrame with replaced species synonyms.

	Return type:

	pandas.DataFrame

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sckan_compare	

 	
 	
 sckan_compare.anatomyvis.AntomyVis	

 	
 	
 sckan_compare.blockvis.BlockVis	

 	
 	
 sckan_compare.cachemanager.CacheManager	

 	
 	
 sckan_compare.utils	

Index

 C
 | E
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S

C

 	
 	cache (in module sckan_compare.cachemanager.CacheManager)

E

 	
 	execute_query() (sckan_compare.SckanCompare method)

F

 	
 	fig (in module sckan_compare.anatomyvis.AntomyVis)

 	(in module sckan_compare.blockvis.BlockVis)

 	
 	filter_dataframe() (in module sckan_compare.utils)

G

 	
 	get_dataframe() (in module sckan_compare.utils)

 	get_filtered_dataframe() (sckan_compare.SckanCompare method)

 	get_valid_phenotypes() (sckan_compare.SckanCompare method)

 	
 	get_valid_phenotypes_circuit_role() (sckan_compare.SckanCompare method)

 	get_valid_regions_specify_species() (sckan_compare.SckanCompare method)

 	get_valid_species() (sckan_compare.SckanCompare method)

I

 	
 	icons (in module sckan_compare.blockvis.BlockVis)

M

 	
 	max_cache_days (in module sckan_compare.cachemanager.CacheManager)

 	MAX_X (in module sckan_compare.anatomyvis.AntomyVis)

 	(in module sckan_compare.blockvis.BlockVis)

 	MAX_Y (in module sckan_compare.anatomyvis.AntomyVis)

 	(in module sckan_compare.blockvis.BlockVis)

 	
 	
 module

 	sckan_compare, [1]

 	sckan_compare.anatomyvis.AntomyVis

 	sckan_compare.blockvis.BlockVis

 	sckan_compare.cachemanager.CacheManager

 	sckan_compare.utils

N

 	
 	NODE_RADIUS (in module sckan_compare.anatomyvis.AntomyVis)

P

 	
 	plot_dataframe_anatomy_vis() (sckan_compare.SckanCompare method)

 	
 	plot_dataframe_block_vis() (sckan_compare.SckanCompare method)

R

 	
 	region_dict (in module sckan_compare.anatomyvis.AntomyVis)

 	remove_duplicate_species() (in module sckan_compare.utils)

 	
 	replace_region_synonyms_dataframe() (sckan_compare.SckanCompare method)

 	replace_species_synonyms_dataframe() (sckan_compare.SckanCompare method)

S

 	
 	SCALE (in module sckan_compare.anatomyvis.AntomyVis)

 	(in module sckan_compare.blockvis.BlockVis)

 	
 sckan_compare

 	module, [1]

 	
 sckan_compare.anatomyvis.AntomyVis

 	module

 	
 sckan_compare.blockvis.BlockVis

 	module

 	
 	
 sckan_compare.cachemanager.CacheManager

 	module

 	
 sckan_compare.utils

 	module

 	SckanCompare (class in sckan_compare)

 	species (in module sckan_compare.anatomyvis.AntomyVis)

 nav.xhtml

 Table of Contents

 		
 Welcome to SCKAN-Compare’s documentation!

 		
 Introduction

 		
 Installation

 		
 Basic Usage

 		
 Web App

 		
 Contributor Covenant Code of Conduct

 		
 Code Docs

 		
 SckanCompare Class

 		
 AntomyVis Class

 		
 BlockVis Class

 		
 CacheManager Class

 		
 Utils Module

_static/minus.png

_static/plus.png

_static/file.png

_static/logo.png
SCKAN-COMPARE

